
Dr. Ravi Shankar Mishra,Prof. Puran Gour,Braj Bihari Soni / International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.905-910

905 | P a g e

Design and Implements of Booth and Robertson’s multipliers
algorithm on FPGA

Dr. Ravi Shankar Mishra Prof. Puran Gour Braj Bihari Soni
 Head of the Department Assistant professor M.Tech. scholar
 NRI IIST, BHOPAL NRI IIST, BHOPAL NRI IIST, BHOPAL

ABSTRACT

The Arithmetic and logical unit play an important
role in digital systems. Particular, Multiplication is
especially relevant instead of other arithmetic
operators, such as division or exponentiation, which
one is also utilized by multiplier as building blocks.
Multipliers are key components of many high
performance systems such as FIR filters,
microprocessors, digital signal processors, etc . A
system’s performance is generally determined by the
performance of the multiplier because the multiplier
is generally the slowest element in the system. For
faster computation, this paper compared Robertson’s
and Booth’s algorithm in which quick and accurate
performance of multiplier operation has been done.
These algorithms provides high performance than
other multiplication algorithms . For achieving these
task, Xilinx ISE 8.1i software has been used and
implemented on FPGA xc3s400pq208-5.

Keywords: Booth, FPGA, VHDL, Robertson’s,
Multiplication, Xilinx ISE 8.1i

I. INTRODUCTION

Digital arithmetic operations are very important in
the design of digital processors and application-
specific systems. Arithmetic circuits form an
important class of circuits in digital systems. With the
remarkable progress in the very large scale
integration (VLSI) circuit technology, many complex
circuits, unthinkable yesterday have become easily
realizable today.Algorithms that seemed impossible
to implement now, have attractive implementation
possibilities for the future. This means that not only
the conventional computer arithmetic methods, but
also the unconventional ones are worth investigation

in new designs. Multiplication is especially relevant
since other arithmetic operators, such as division or
exponentiation, which they usually utilize multipliers
as building blocks [3]. Hardware implementation of
arithmetic operations has been oriented typically to
use VLSI circuits. Among the arithmetic operations,
the multiplication is widely used in applications such
as graphics and scientific computation. Therefore,
different kind of schemes has been developed. There
are several algorithms for the computation of
multiplication. Conventional algorithms include:

 1) Booth’s algorithm. 2) Robertson’s algorithm.

1). BOOTH'S ALGORITHM
Requires that we can do an addition or a subtraction
each iteration (not always an addition). When doing
multiplication, strings of 0s in the multiplier require
only shifting (no addition). When doing
multiplication, strings of 1s in the multiplier require
an operation only at each end. We need to add or
subtract only at positions in the multiplier where
there
is a transition from a 0 to a 1, or from a 1 to a 0.[12]

Dr. Ravi Shankar Mishra,Prof. Puran Gour,Braj Bihari Soni / International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.905-910

906 | P a g e

 Fig1-Flowchart of booth algorithm

By above flow chart description we have,

b=Multiplier, a=Multiplicand, m= Product.

First we will need twice as many bits in our product

as we have in our original two operands. The leftmost

bit of our operands (both multiplier and multiplicand)

is a sign bit, and cannot be used as part of the value.

Then Decide which operand will be the multiplier

and which will be the multiplicand. If any operand

and both is negative it is represent in two's

complement. Begin with a product that consists of the

multiplier with an additional X leading zero bits. And

check the LSB and the previous LSB of product to

determine the arithmetic action. If it is the FIRST

pass, use 0 as the previous LSB.

Possible arithmetic actions:

00  no arithmetic operation only shifting

01  add multiplicand to left half of product and
shifting

10  subtract multiplicand from left half of product
and shifting

11  no arithmetic operation only shifting

So, here we are using arithmetic right shift
(ASR).[14]

2).ROBERTSON'S ALGORITHM

 Fig2-Flowchart of Robertson’s algorithm

Consider the case that we want to multiply
two 8 bit numbers X = x0x1:::x3 and Y = y0y1:::y3.
Depending on the sign of the two operands X and Y,
there are 4 cases to be considered:

X0 = y0 = 0, that is, both X and Y are
positive. Hence, multiplication of these numbers is
similar to the multiplication of unsigned numbers. In
other words, the product P is computed in a series of
add-and-shift steps of the form

Pi Pi + Xi * Y

 Pi+1 Pi * 2-1

Note that all partial products are non-
negative. Hence, leading 0s are introduced during

Dr. Ravi Shankar Mishra,Prof. Puran Gour,Braj Bihari Soni / International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.905-910

907 | P a g e

right shift of the partial product.

x0 = 1; y0 = 0, that is, X is negative and Y is positive.
In this case, the partial product is always positive (till
the sign bit x0 is used). In the final step, a subtraction
is performed. That is,
x0 = 0; y0 = 1, that is, X is positive and Y is negative.
In this case, the partial product is positive and hence
leading 0s are shifted into the partial product until the
rest 1 in X is encountered. Multiplication of Y by this
1, and addition to the result causes the partial product
to be negative, from which point on leading 1s are
shifted in (rather than 0s).
x0 = 1; y0 = 1, that is, both X and Y are negative.
Once again, leading 1s are shifted into the partial
product whenever the partial product is negative.
Also, since X is negative, the correction step
(subtraction as the last step) is also performed.
Recall the difference in the correction steps between
multiplication of two integers and two fractions. In
the case of two integers, the correction step involves
subtraction and shift right. Whereas, in the case of
fractions, the correction step involves subtraction and
setting.[5]

III.RESULT AND DISCUSSION

The design of fixed point 4×4 -bit booth multipliers,
4×4 -bit Robertson’s multipliers has been done using
VHDL and implemented in a Xilinx Spartan-3AN
(Selected Device : 3s400pq208-5) FPGA using the
Xilinx ISE 8.1i design tool.

Figs. 3,4,5,6 illustrate the synthesis report and RTL
View (Top Module) and Internal RTL View and
Simulation result of 4×4 -bit Booth multipliers .Figs.
7,8,9,10 illustrate the synthesis report and RTL View
(Top Module) and Internal RTL View and Simulation
result of 4×4 -bit Robertson’s multipliers.
Table 1 summarizes the FPGA device resources
utilization for 4×4 Booth and 4×4Robertson’s
multiplier for Spartan-3AN (Selected Device :
3s400pq208-5).

Fig.3: synthesis report of 4×4 -bit Booth multiplier

Fig.4: RTL View of 4×4 -bit Booth multiplier (Top
Module)

Dr. Ravi Shankar Mishra,Prof. Puran Gour,Braj Bihari Soni / International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.905-910

908 | P a g e

Fig 5: Internal RTL View of 4×4 -bit Booth
multiplier

Fig 6: Simulation of 4×4 -bit Booth multiplier

Fig.7: synthesis report of 4×4 -bit Robertson’s

multiplier

Fig.8: RTL View of 4×4 -bit Robertson’s multiplier

(Top Module)

Fig.9: Internal RTL View of 4×4 -bit Robertson’s
multiplier

Dr. Ravi Shankar Mishra,Prof. Puran Gour,Braj Bihari Soni / International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.905-910

909 | P a g e

Fig.10: Simulation of 4×4 -bit Robertson’s multiplier

IV. DEVICE UTILIZATION

Table 1:FPGA resource utilization for Booth and
Robertson’s multiplier for Spartan-3AN (Selected
Device : 3s400pq208-5)

Bit

Wid
th

Multipli
ers

algorith
m

Numb
er of
Slices

Numb
er of

4
input
LUTs

Numb
er of

bonde
d

IOBs

Dele
y

4×4 Booth’s 19 34 16 14.56
ns

4×4 Robertso
n’s

14 24 16 16.70
ns

V. CONCLUSION

We have presented the FPGA implementation for
fixed point 4×4 Booth multiplier algorithm , 4×4
Robertson’s multiplier algorithm. So, after
comparison of booth algorithm and Robertson’s
algorithm results concluded that, Robertson’s
algorithm used less hardware but booth algorithm
take less delay time.
We have used a FPGA Spartan XC3S400pq208-5 for
physical implementation and for synthesis and
simulation process we have used the computation
packet ISE 8.1i provided by Xilinx.

References

[1] Muhammad H. Rais and Mohamed H. Al Mijalli,
“FPGA Based Fixed Width 4×4, 6×6, 8×8 and
12×12-Bit Multipliers using Spartan-3AN”, IJCSNS
International Journal of Computer Science and
Network Security, VOL.11 No.2, February 2011

[2] T.J. Todman, G.A. Constantinides, S.J.E. Wilton,
O. Mencer, W. Luk and P.Y.K. Cheung,
“Reconfigurable computing: architectures and design
methods”, in IEE Proc. of the Computer and Digital
Techniques, 2005, Vol. 152, No. 2, pp. 193-207.

[3] M.A.G. Martinez, R.P. Gomez, G.M. Luna and
F.R. Henrique, “FPGA Implementation of an
Efficient Multiplier over Finite Fields GF(2m)”
Proceedings of International Conf. On
Reconfigurable Computing and FPGAs, 2005.

[4] C. Maxfield, The Design Warrior’s Guide to
FPGAs: Devices, Tools and flows. Newnes
Publishers, MA, 2004.

 [5] John Wiley & Sons - 2004 – “Arithmetic and
Logic in Computer Systems” A JOHN WILEY &
SONS, INC., PUBLICATION.

[6] E.III. Walters, M.G. Arnold, and M.J. Schulte,
“Using truncated multipliers in DCT and IDCT
hardware accelerators”, in Proc. of the XIII SPIE
Advanced Signal Processing Algorithms,
Architectures, and Implementations, 2003, pp. 573-
584.

 [7] J.H.Kim, J.S.Lee and J.D.Cho “A Low Power
Booth Multiplier Based on Operand Swapping in
Instruction Level” Journal of the Korean Physical
Society, Vol. 33, No. , January 1998, pp. S258_S261.

[8] Stuart F. Oberman, and Michael J. Flynn,
“Division Algorithms and Implementations” IEEE
Transactions on Computers, vol. 46, no. 8, August
1997

[9] L. Song, K.K. Parhi, “Efficient Finite Field
Serial/Parallel Multiplication”, Proc. of International
Conf. On Application Specific Systems, Architectures
and Processors, pp. 72-82, Chicago,USA, 1996.

[10] Rajendra Katti “A Modified Booth Algorithm
for High Radix Fixed-point Multiplication” IEEE

Dr. Ravi Shankar Mishra,Prof. Puran Gour,Braj Bihari Soni / International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.905-910

910 | P a g e

Trans. VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, VOL 2. NO 1. Dec. l994.

[11] P. E. Madrid, B. Millar, and E. E. Swartzlander,
“Modified Booth algorithm for high radix fixed-point
multiplication,” IEEE Trans. VLSI Syst., vol. 1 , no.
2, pp. 164-167, June 1993

[12] J. J. F. Cavanagh, Digital Computer Arithmetic,
New York: McGraw Hill, 1984.

 [13] Douglas L. Perry, VHDL programming by
Example. [online]
16.2.2009 [web]
http://books.google.cz/books?id=aWWpc50wChIC
&printsec=frontcover&dq=VHDL

